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Abstract 

The problem of finding the points of best fit between 
pairs of lattices is formulated in higher dimensions and 
solved using a modified version of the cut and projection 
method. This best-fit set constitutes a generalization of 
the concept of coincidence and is relevant to the theory 
of grain boundaries. It establishes an interesting link 
between the theory of quasicrystals and grain 
boundaries. 

1. Introduction 

Owing to its technological importance, the problem of 
determining the atomic structure of grain boundaries 
has been the subject of a considerable amount of work in 
the last few decades. A number of geometrical models 
have been proposed with varying degrees of success. 
All models assume that 'special' boundaries, i.e. grain 
boundaries with special properties, arise when there is a 
high degree of 'good fit' between the lattices of the 
parent crystals; for instance, the coincidence site lattice 
(CSL) (Ranganathan, 1966) considers points common to 
both lattices (the intersection lattice) as points of good 
fit and assumes that special boundaries arise when the 
density of coincidence sites is high. A generalization of 
the CSL has produced the more successful structural 
units model (Bishop & Chalmers, 1968), which 
accounts for the observed relative displacement of the 
parent crystals that destroys coincidence sites, although 
it still considers that special boundaries are those with 
small periods as predicted by the CSL. Another 
generalization of the CSL is the O-lattice theory 
(Bollmann, 1970), which considers that O-points (points 
with the property of having the same internal coordi- 
nates in both lattices) correspond to positions of good fit 
between the two lattices. In exact coincidence orienta- 
tions, the O-lattice contains the CSL but, in contrast 
with the latter, it varies continuously over the whole 
angular range. A related concept is that of the 
displacement shift complete (DSC) lattice (Bollmann, 
1970), which is defined as the sum of the two lattices; 
Burgers vectors of grain-boundary dislocations are 
assumed to belong to the DSC lattice. Unfortunately, 
none of the modelS proposed so far has been successful 
in predicting the structure of arbitrary grain boundaries 

(special or not) and thus the elaboration of a general 
grain-boundary theory has not been possible. 

With the aim of solving this problem, a new 
generalization of the CSL model, called the generalized 
coincidence sites network (GCSN) has been introduced 
(Romeu, Beltrfin, Arag6n & G6mez, 1997; G6mez, 
Beltrfin, Arag6n & Romeu, 1997). The new model 
provides the atomic structure of arbitrary grain 
boundaries, including defects such as grain-boundary 
dislocations and vacancies, and has been successful in 
describing important experimental observations related 
to dislocation content and the speciality criterion 
(Romeu, Belmin, Aragrn & G6mez, 1997; G6mez, 
Beltr(m, Arag6n & Romeu, 1997). 

In the GCSN model, two points are considered to be 
good-fit points if they both lie in the intersection of their 
respective Voronoi (or Wigner-Seitz) cells. Since this 
condition is obviously met by coincidence points, a 
GCSN contains the CSL. We stress the term network 
here since, in contrast with the CSL, GCSN structures 
need not be periodic. The main difference between 
GCSN and CSL models, or any other model for that 
matter, is that it not only provides the positions of 
special (e.g. coincidence) points but it also produces its 
decoration, thus giving a complete description of the 
boundary. An interesting point of the new model is that 
its formalism is similar to that used to produce 
quasicrystals in the multigrid approach (de Bruijn, 
1981; Kramer & Neri, 1984; Levine & Steinhardt, 
1986). This establishes a clear link between grain 
boundaries and quasicrystals that has motivated this 
work and could provide a new insight into both fields. 

This relationship between quasicrystal and grain 
boundaries had been noticed some years ago. A. P. 
Sutton (1988) observed that the simplest irrational tilt 
boundaries may be described as a quasiperiodic 
sequence of appropriate fundamental structural units. 
This result was supported by the suggestion (Rivier & 
Lawrence, 1988) that a quasicrystalline grain boundary 
has the minimal Gibbs free energy under specific 
boundary conditions. Finally, it was found useful to 
consider a six-dimensional lattice to study the symme- 
tries of general grain boundaries in three dimensions 
(Gratias & Thalal, 1988). 

In this work, we show, through the particular case of 
two rotated square lattices, that the set of GCSN points 
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between a pair of lattices in two or three dimensions can 
be obtained by projecting points from a higher- 
dimensional lattice using a modified version of the 
so-called cut and projection method (Duneau & Katz, 
1985). Some tilings associated with the pair of square 
lattices are obtained by projection and their relation to 
twist grain boundaries is pointed out. This shows that it 
is possible to use the powerful tools already developed 
in the field of quasicrystals, such as the multigrid (de 
Bruijn, 1981; Kramer & Neri, 1984; Levine & 
Steinhardt, 1986) and the cut and projection method 
(Duneau & Katz, 1985) to study the structure of grain 
boundaries. 

The paper is organized as follows. In §2, the theory 
behind the problem of finding the points of good fit 
between a pair of arbitrary three-dimensional lattices is 
presented, showing the relationship between regions of 
good fit (as defined by the GCSN model), CSL and 
grain boundaries. In §3, the higher-dimensional 
approach t o  the problem is presented and detailed for 
the case of two rotated square lattices. In §4, we propose 
a method to find the projection matrix when dealing 
with arbitrary basis vectors, which implies non-cubic 
higher-dimensional lattices. The relationship between 
rational approximants of a quasiperiodic structure and 
the CSL is developed in §5. Some examples of GCSN's  
associated with the pair of square lattice are given in §6 
and, finally, §7 is devoted to discussion and conclusions. 

tessellation of the lattice L, that is, l ~ L is the closest 
lattice point to x if x is inside the Voronoi polyhedron 
around I. For the case of the simple cubic lattices we are 
dealing with, the solution can be expressed in a compact 
form: given x ~ R 3, the lattice point in L 1 closest to it is 

3 
N 1 (x) -- ~ round(x • a~')ai, (1) 

i=1 

where round(x) is the closest integer to x, with 
round(n + ½ ) -  n for integer n and {a~, a~, a~} is the 
basis reciprocal to {a l ,a  2, a3}. Similarly, the lattice 
point in L 2 closest to x is given by 

6 
N2(x ) = ~ round(x • aT)a/, (2) 

i=4 

where {a,], a~, am} is the basis reciprocal to {a 4, a 5, as}. 
Notice that the terms round(x, a*) are basically the 
external coordinates of x in the terminology of 
Bollmann (1970). 

Equations (1) and (2) partition the space in cells. A 
given point x 6 R 3 belongs to the cell centered around 
Ix 6 La if N l(x) = 11 with a similar condition holding for 
L 2. The cell around 11 6 L 1 will be denoted by Aa(I1) 
and that around 12 (with respect to L2) by A2(12). 
Formally, 

A I ( ] I )  "-- {X E R31NI(x) = 11} 

A2(12) = (x ~ R3[Nz(x) = 12}. 

2. The basic theory 

In order to state notation and definitions, in this section 
we briefly review the theory involved in the problem of 
finding the points of best fit between a given pair of 
lattices. A complete and more detailed account of the 
theory is given elsewhere (G6mez, Beltrfin, Arag6n & 
Romeu, 1997). In the present work, attention is 
restricted to pairs of simple cubic lattices related by 
means of a rotation where, as will be shown in §3, the 
connection with higher-dimensional lattices is clearer. 

Let L 1 and L 2 be two point lattices with common 
origin in R 3 having basis vectors {al,a2, a3} and 
{a4, as, a6}, respectively. The generic lattice vectors 
11 ~ L 1 and 12 E L 2 may then be written as 

11 = ~1al + ~2a2 -k- ~3a3, 

12 = (la4 + (2a5 + (3a6, 

where ~/and (i are integers. 
Let us now consider the following problem: for a 

lattice L in R 3 and an arbitrary point x ~ R 3, find a 
lattice point I that minimizes the distance from x to 1. In 
other words, find the lattice point 1 closest to x. This 
problem has several practical applications and has been 
extensively treated (Conway & Sloane, 1988) for 
important lattices in three or more dimensions. The 
general solution is directly related to the Voronoi 

2.1. Points of  good fit between the lattices L 1 and L 2 

In the following, we are interested in finding points of 
good fit (in a sense specified below) between L 1 and L 2. 
The key concept in the present model is that of 
neighbors. We say that two lattice points 11 6 L 1 and 
12 E L 2 are neighbors if and only if 

N1 (12) - 11, 

N2(I1) = 12 

or, alternatively, if 

11,12 ~ AI(I1) A A2(12). (3) 

The model postulates that, if the atoms are centered at 
the positions of L 1 in one grain and L 2 in the other, 
atoms at the boundary are at positions of good fit 
between the two lattices where these positions are in 
turn given by the set 

= {(11 + 12)/2111 E L 1,12 E L 2, 11,12 are neighbors}, 

(4) 

which has been referred to as the generalized coin- 
cidence sites network or GCSN. 

The idea behind this approach is that the points of 
good fit between two lattices are always half way 
between a point in the first lattice and a point in the 
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second lattice provided that they are close to each other 
in the sense of being neighbors. Also note that, by 
construction, if there is a coincidence relationship 
between the two lattices, the set of coincidence sites is 
a subset of G. 

It should be remarked that, for non-cubic lattices, 
equations (1) and (2) must be formulated in terms of the 
Voronoi polyhedron around the lattice points 11 and ! 2, 
respectively, instead of using the round function. In the 
present case, it is important to notice that the points in G 
are of the form 

(, 
[NI(X ) + N2(x)]/2 = ½ }-~ round(x, aT)a i 

i=1 

+ ~ round(x • a*)ai , (5) 
i=4 

an expression that resembles that used in the grid 
formulation of quasilattices (Levine & Steinhardt, 
1986). 

2.2. Lattice displacements 

In the most general case, the lattices do not have to 
possess a common origin and one may be displaced with 
respect to the other. Assume that L1 has its origin at the 
origin of the coordinate system, as before, but the origin 
of/_~ is displaced by vector t with respect to the origin 
of the coordinate system. In this case, the formalism 
still applies, but for instance N2(x ) will be given by 
~--],~=4round[(x - t)-  a*]ai. The terms t .  a~' are similar to 
the phason terms in the jargon of quasicrystals (Levine 
& Steinhardt, 1986). 

2.3. Comparison with Bollmann's O-lattice theory 

Given the lattices L 1 and L2, irA is the linear mapping 
such that A(ai) = ai+ 3 (i = 1, 2, 3), then (Smith & Pond, 
1976) O is an O-point if and only if it satisfies 
( I -A-1)O =11 for some 11 ~ L 1 (I represents the 
identity mapping). The O-points have the property 
that, if an O-point O is used as the new origin for the 
coordinate system, the transformation A still generates 

from L 1 around O. 
The bases for L 1 and L 2 and the transformation A 

should be chosen in such a way that, in a neighborhood 
of the origin, A relates closest points [i. e. if 11 ~ L 1 then 
A(I1) is the point in L 2 closest to 11]. If the whole space is 
partitioned by the Voronoi cells of the O-lattice, then 
within each cell, given 11 6 L 1 , we can find the point in 
L 2 closest to it, namely A(lx). The points 11 and A(I1) 
would be, in our terminology, neighbors. 

Bollmann proposes the use of a linear relaxation 
model to construct the boundary (Bollmann, 1982). A 
boundary point is assumed to lie on the line joining 11 
and A01) but its exact location should be chosen in such 
a way that for regions on the boundary close to lattice L 1 
the boundary atom should lie close to 11 , whereas for 

regions on the boundary close to lattice L 2 the boundary 
atom should be close to A(I1). 

The GCSN coincides with the model by Bollmann if 
the boundary atom is assumed to be located at 
[11 + A(ll)]/2. However, in its most general formulation 
(not the restricted version applicable only to simple 
cubic lattices presented here), the GCSN has a number 
of distinct advantages: 

(i) There is no need to select bases for the lattices. In 
this way, there is no ambiguity due to the non- 
uniqueness of the bases. 

(ii) The transformation A is not used at all, here again 
there is no ambiguity owing to the non-uniqueness of the 
transformation relating the lattices. 

(iii) The GCSN works adequately for any pair of 
lattices. There are no problems when the lattices are 
related by rotations (or shears) where the matrix 
( I -  A -1) does not have an inverse. 

(iv) The GCSN can be used not only for arbitrary 
pairs of lattices but also for noncrystalline structures 
such as quasicrystals. In the GCSN, any two Delaunay 
systems (Galiulin, 1980) can be studied. 

3. Projection from higher-dimensional spaces 

It has already been mentioned that the equations 
describing the GCSN model [equation (5)] are closely 
related to those used in the multigrid method (de Bruijn, 
1981; Kramer & Neri, 1984; Levine & Steinhardt, 
1986). Thus, the question arises of whether the set of 
points generated using equations (5) or (4) can also be 
obtained by projection from higher-dimensional spaces, 
in exactly the same way as quasilattices can be obtained 
by the cut and projection method (Duneau & Katz, 
1985). Actually, as we shall show below, the problem 
of finding the points of good fit of a given pair of cubic 
lattices can be adequately formulated and solved in 
higher dimensions using the cut and projection method. 

a3 

Fig. 1. Basis vectors of the two square lattices considered in this work. 
The lattice L 1 is generated by {a I , a2} and L z by {a3, a4}. 
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To introduce the basic ideas used in this approach, we 
shall consider the simple case of two square lattices in 
the plane rotated by a given angle• Let L 1 and L 2 be two 
lattices generated by {al, a2} and {as, a4}, respectively, 
and given by 

a 1 = 2 - 1 / 2 ( c o s  0, sin 0), 

a2 = 2 - 1 / 2 (  - sin0, cos0), 
(6) 

a3 = 2-1/2(cos 0, - sin 0), 

a 4 - -  2-z/2(sin0, cos 0). 

As shown in Fig. 1, these vectors generate two square 
lattices rotated by 20. 

The first step towards a higher-dimensional formula- 
tion consists in viewing L1 and L 2 as the intersection 
points of a two-dimensional grid g defined as the union 
of four systems gi of equidistant parallel lines defined as 

gi  - -  {Y 6 R2Iy "ai = ki ,  k i = O, +1,  4- 2 . . . .  }, 

i =  1 ,2 ,3 ,4 .  

If 11 E L 1 , then ! 1 is the intersection of lines y .  a i -- ki, 
where i - 1,2, and, if ! 2 ~ L 2, then it is the intersection 
of lines y .  a i -- ki, where i = 3, 4. 

According to the discussion above, equations (1) and 
(2) partition the space in cells• The grid g* associated 
with these cells is the Voronoi tessellation of g, which 
turns out to be the union of the systems 

g* -- {y ~ R2Iy .a~ - -  ( k  i + 1/2), k i =0,  4-1, 4-2 . . . .  }, 

i - -  1 ,2 ,3 ,4 .  

So, for instance, the primitive translation cell of g*, 
which corresponds to the primitive cell that equation (1) 
defines for L1, is 

{y ~ R 2 1 - ½  < y . a / < ½ ,  i = 1,2}. 

Similarly, for L z, 

{y ER21--½ < Y.a i  <½,  i = 3,4}. 

Now, let G be a four-dimensional grid consisting of 
four systems of hyperplanes defined as 

G i = { y E R a l y . e i = k i ,  ki = 0, 4-1, 4- 2 . . . .  }, 

i -- 1, 2, 3,4,  

where {el, e2, e3, e4} is the canonical (orthonormal) 
basis of R 4. The intersection points of G define a four- 
dimensional cubic lattice Z~ with a primitive transla- 
tional cell given by 

{ y ~ R 4 1 0 < y . e i < l ,  i - -  1, 2, 3, 4}. 

Let u s now consider an orthogonal decomposition of 
R 4 as R 4 - - E  jj + E l ,  such that E jj - - R  2 is the space of 
the grid g. The connection between g and G arises when 
one identifies g with the intersection o f E  II with the four- 
dimensional grid G, that is 

g -- {y ~ R~-ly 6 G N Ell}. (7) 

This directly lead us to the grid method originally 
proposed by de Bruijn (1981) to generate quasiperiodic 
tilings of the plane and generalized by Kramer & Neri 
(1984) to three-dimensional grids• In this formalism, a 
quasiperiodic (or periodic) tessellation of the plane or 
space is obtained as the dual of the grid g. 

3.1.  Ne ighborhood  criterion 

The neighborhood criterion expressed by equation (3) 
for a pair of lattice points 11 6 L~ and 12 ~ L z can now be 
formulated• First note that the Voronoi tessellation of G 
is 

G}* = {y E Raly • ei = (k i -t- 1),z k i =0,  4-1, 4-2,. . .}, 

i - -  1 , 2 , 3 , 4 .  (8) 

Since in this case their intersection points define also a 
1 1 1) ,  g ,  is obtained cubic lattice but displaced by ( 1 , 2 , 2 , 2  

a s  

g* -- {y ~ RZly E G* n Etl}. 

Now, let IIIE L 1 and I~E/-,2 be the coordinates of 
11 and I z embedded in R 4 • According to equation (7), III 
and 1/2 I can be written as 

111 = {y E Rnly • e i : k i ,  i : 1, 2} 71E II, 

l / I = { y 6 R 4 I y  .e  i = k  i, i = 3 , 4 } n E  II . 

From equation (8), the cells around III and 112 I are, 
respectively, 

AI(ll I) : { y  E g4[(ki i) --2 <Y'ei  <(ki+~,  
i = l , 2 } n E  II, 

A2(/~) ={Y ~ R41(ki - ~ < y .  ei < (ki + x_), - -  2 

i -- 3, 4} N E [I, 

with w h i c h  AI(/I l) n A2(/~) becomes 

AI(II I) n A2(112 I) ={y E R4l(ki + _1) 1 2 < Y" ei <- (ki -Jr ~), 

i =  1 , 2 , 3 , 4 } N E  II, 

which is the intersection of EII with a cell of G* with 
index (k 1, k 2, k3, k4). If the neighborhood criterion [see 
equation (3)] is such that l~l,l~ ~ AI(IlI)NA2(IlI2) , it 
implies that l~ f and 1~ must lie in a cell of G*. In other 
words, 11 and ! 2 are neighbors if, embedded in R 4 ,  both 
lie in a cell of G*. 

It can easily be seen that in our case of hypercubic 
lattices if III and l~ both lie in a cell of G* then 

round (/~1. ei ) __ round (l~.  ei) , i = 1, 2, 3, 4. (9) 

Fig. 2 illustrates a low-dimensional example of the 
above procedure. Care must be taken in this case since 
in all the previous formulations the set (6) generates two 
identical square lattices rotated with respect to each 
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other. This fact (and the eutacticity of  the star) allows us 
to use a four-dimensional cubic hyperlattice,  defined as 
the intersection points of  G, in such a way that the plane 
grid is viewed as the intersection of  E II with G. In the 
case depicted in Fig. 2, we cannot reproduce the 
situation of  two rotated lattices generated by a star of  
vectors of  the same norm. Instead, we have to consider 
to linear lattices L 1 and L 2 with parameters a I - 1 and 
a 2 = r,  respectively. The one-dimensional  'gr id '  g is in 
this case the union of  the systems gi = {Y ~ R lya i  - ki,  
k i = 0, + l ,  4-2 . . . .  }, i = 1,2,  which is viewed as the 
intersection with the two-dimensional rectangular grid 
G formed by the union of  the systems G; = 
{ y ~ R 2 1 y . ~ : i - - k  i, k i = 0 , 4 - 1 , - t - 2  . . . .  }, i =  1,2,  
where I1~111- 1/21/2 and 11~211 = r / 2 1 / 2 .  Thus, the 
space containing L 1 and L 2 is embedded in R 2 in such 
a way that vertices of  L~ are the intersections of  EII with 
the grid {y ~ R21y. el = ki} (vertical lines) and vertices 
of L 2 are the intersections of  E li with the grid 
{yeR21y .~ :  2 - - k i }  (horizontal lines). The Voronoi  
tessellation of the two-dimensional rectangular lattice 
is drawn with broken lines and pairs of  points fulfilling 
the neighborhood condition [equation (9)] lie in the 
shaded Voronoi cells. The projection, onto EII, of  the 
centers of  these cells gives the GCSN of L~ and L 2. As 
will be shown in the next section, the projected points 
constitute a subset of  those obtained by the cut and 

project ion method and the GCSN is therefore,  in this 
example,  a subset of  the Fibonacci chain. 

3.2 .  The cut  a n d  p r o j e c t i o n  m e t h o d  

The connection between the cut and projection and 
the grid methods becomes clear when one considers the 
four-dimensional  lattice L and the projections, onto EII, 
of  the lowest-coordinate corners of  the cubes of  E that 
have non-zero intersection with E II . These are the 
vertices of  the tiling associated with the grid g, i.e. the 
quasiperiodic tiling. The set of  vertices of  E to be 
projected lies inside a strip parallel to EII. This is the 
same strip that the cut and projection method considers 
(G~ihler & Rhyner,  1986). 

In this context, the neighborhood criterion (9) can be 
rewritten as follows. Since ~--]~=1 round(In1 I" ei)ei and 
5--~/4=1 round(/~ I. ei)e i are vertices of  E,  say x I and x 2, the 
condition (9) requires that x 1 = x 2 -- x. This imposes a 
restriction on the magnitude of  the vector x along E ± as 
is illustrated in Fig. 3 with an example in two 
dimensions which reproduces the situation in four 
dimensions where we are interested in the intersection 
of  E u with two-dimensional  facets of  the hypercube. 
By calculating the angle between E u and one basis 
vector of  /Z, after a straightforward tr igonometric 
calculation, one gets that if x = 5-]~=1 round(/ll I" ei)ei = 
5--~4=1 round(l~ I. ei)ei, then 

. _ _  

L _ .  

I--- 

Z 

---i ....... 

II 

E 
/ 

o L 1 

• L 2 

Fig. 2. One-dimensional example of the procedure described in the 
text to obtain the best-fit lattice of a pair of lattices. In this case, two 
linear chains L 1 and L 2 with different parameters (a 1 -- 1 and 
a 2 = r) are embedded in R 2. The vertices of L I (/_,2) are the 
intersections of E II with the vertical (horizontal) lines of the two- 
dimensional grid with spacings I/21/2 and r/2 I/2, respectively. The 
Voronoi tessellation of the two-dimensional lattice is drawn with 
broken lines and the pairs of points fulfilling the neighborhood 
condition lie in the shaded Voronoi cells. The projection (onto E u) 
of the centers of these cells gives the best-fit lattice between L 1 and 
Z~. 

Ilxlll ~ ~cos(20)/[1 + (c0s20)2] 1/2. (10) 

This defines a cylindrical 'pipe '  instead of  the standard 
strip considered in the cut and projection method. The 
projection onto E HI of  x yields the best-fit point between 
111 and l~ I. 

In short, the projection onto E u of  all the vertices 
x e E that fulfil the condition (10) defines ~, the set of  
points of  good fit between L 1 and L 2, i .e.  the GCSN. 
Observe that this is in general a subset of  that obtained 
by the standard cut and projection method, which 

?Z 
j m  

II 
E 

Fig. 3. Two-dimensional example of the situation in which two 
vertices III ~ L 1 and lJ, I ~ L 2 lie in a Voronoi cell. In such a case we 

" 2 " - have x = ~i=] round(ll B" ei)ei = E2=I round(/2 l" ei)ei .  The value of 
I Ix±ll can be calculated easily if we know the angle between E u and 
one edge of the square. 
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additionally projects the vertices of 12 (centers of 
Voronoi cells) that lie inside the strip. Clearly, many 
of these centers correspond to points III and/12f that do 
not fulfil the conditions (9) or (10). 

4. Non-eutactic stars 

In the previous discussion, it was assumed that the 
embedding (7) exists, which means that the grid g can 
be viewed as the intersection of E tl with a four- 
dimensional cubic grid G. This is true for the example 
of the two rotated square lattices discussed here since 
the star defined by {a 1, a 2, a 3, a4} is eutactic for any 
value of 0 [for the eutacticity criterion, see Coxeter 
(1973) and Grmez, Arag6n & Dfivila (1991)]. This 
means that there exists a four-dimensional orthonormal 
set {el, e2, e3, e4} such that a i : pI l (e i ) ,  i = 1 . . . . .  4, 
where pll is the projector from R 4 to EII. For a general 
star {a 1, a 2, . . . ,  a6} defining two lattices L 1 and L 2, this 
is no longer true. In this case, it is possible that there is 
no n-dimensional embedding in which g can be viewed 
as the intersection of a cubic grid in n dimensions, 
making it necessary to consider noncubic lattices 
(Grmez, Arag6n & Dfivila, 1991). 

This might be important when one is interested in the 
use of the cut and projection method to obtain the set of 
good-fit points between two arbitrary lattices, which, 
furthermore, can be of different density. The higher- 
dimensional formulation of this general case is not 
trivial, however we can give some clues on how to 
achieve this. 

The first thing one needs is to find a procedure to 
correctly embed the space of the grid, EII, in R 6. It is 
completed once we define the projector pll : R  6 ___> Ell 
such that E II be the range of e II . In what follows, we 
propose a general method to find this projector for the 
case of two arbitrary three-dimensional lattices 
generated by {a 1, a 2, a3} and {a 4, a 5, a6}, respectively. 
In this case, the grid g generated by the star 
{a 1 , a 2, a 3, a 4, a 5, a6} will be viewed as the intersection 
with a six-dimensional grid G whose intersection points 
define a noncubic six-dimensional lattice 12. The 
projector pll and the metric tensor of 12 will be defined. 

Let {al,a2, a3}, {aa, a5, a6}, {a~,a~,a~} and 
{a t, a~, a~} be as before, then, since for every x ~ R 3 

3 6 

x = ~ ( x .  a*)ai = ~ ( X "  a T)ai, 
i= 1 i=4 

it follows that 

6 

x -- ½ ~ ( x "  a*)ai. 
i=1  

Defining b * -  a,* and b i = ai/2, we have 

6 

x -- ~--~(x. bT)b i 
i=1 

and this expression has the form required in the 
generalized Hadwiger theorem (G6mez, Aragrn & 
Dfivila, 1991) so there exists a basis {e 1, e 2 . . . . .  e6} of 
R 6 (not necessarily orthonormal) with reciprocal basis 
{e~, e~ . . . . .  e~} and such that pIl(Ei) --  bi and 
PIl(e~') = b*. The matrix elements of this projector can 
be shown to be given by 

p ! l .  * .  b j .  z,j : b i  

The metric tensor (Gram matrix) of the basis in R 6 
can be obtained unambiguously if the extra condition is 
imposed that the subspaces of R 6 from which {a 1 , a 2, a 3 } 
and {a 4, a 5, a6} project are mutually orthogonal. Then 
the metric tensor becomes 

gk,.i = ak " a j / 2 .  

5. Rational approximants  and coincidence lattices 

Here we shall point out the relationship between the so- 
called rational approximants (Goldman & Kelton, 1993) 
and coincidence lattices. To this end, we turn back to 
the example of the two square lattices developed in §3, 
considering the cut and projection method. 

In this higher-dimensional approach, a change in the 
value of the angle 0 between L 1 and L 2 is equivalent to a 
rotation of the strip, which, depending on the value of 
tan 0, can be rational or irrational with respect to L. For 
irrational values of tan0, the best-fit lattice is a 
quasiperiodic structure and, for rational orientations, 
it is a rational approximant of the quasiperiodic lattice. 

There are several ways to obtain periodic structures 
using the cut and projection method (Yacamfin & 
Torres, 1993). The most suitable for our purposes 
considers that the change of the angle 0 induces a 
distortion of the lattice 12 along E ±, the space 
perpendicular to E II , yielding a distorted lattice 12 
from which rational approximants can be obtained by 
cut and projection. Since the projection onto the 
physical space remains unchanged, the tiles preserve 
their shape but become rearranged to form a periodic 
structure. 

Let us return to our two-dimensional example and 
consider the two lattices L 1 and L 2 generated by {a I, a2} 
and {a 3, a4} given by equation (6) and shown in Fig. 1. 
If 0 = 22.5 °, we have that tan0 = 1/(1 + 2 I/2) and the 
star {a 1 , a2, a3, a4} points to four vertices of an octagon. 
The four basis vectors of R 4 project onto equation (6) 
and the GCSN between L 1 and L 2 is a subset of the 
octagonal quasiperiodic tiling. 

For rational orientations, say tan0 = p / q ,  the dis- 
torted lattice £ has nonzero intersections with E II (E II is 
actually a lattice plane of £)  and, therefore, projection 
produces a periodic structure. The set points of 12 
intersecting EII is the CSL between L~ and~L 2. In other 
words, the CSL is the set of points of 12 with zero 
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component along E ±. The deformed lattice /~ can be 
obtained by considering that /2 can be written, in a 
rotated basis, as the integer linear combination of the 
vectors 

t 1 - -  2-1/2(C0S 0, sin O, - s i n  0, cos 0), 

g2 : 2-1/2( - sin O, cos O, -- cos O, -- sin 0), 

g3 = 2-1/2( cOs O, -- sin O, -- sin O, -- cos 0), 

g4 -- 2-1/2( sin O, cos O, cos O, -- sin 0), 

(11) 

where the last two components of each vector are the 
projection of the basis vectors (or R 4) onto E I .  

Now we shall deform the components of equation 
(11) along E -L to obtain a lattice/2 commensurate with 
E II . This can be performed by writing cos 0 and sin 0 in 
terms of tan0 = p / q  in the E ± components of (11) and, 
in order to preserve the projections o n t o  E II , we take 
0 -- Oq~ -- 22.5 ° for the parallel components. This gives 
the set 

p 
tl  = 2-1/2 cos Oqc , sin0qc , (p2 + q2)1/2' 

(p2 + q2)1/2 ' 

( - q ~2 = 2-1/2 - sinOqc, cosOqc, (,p2 + q2)1/2' 

_ ) 
(392 + q2)1/2 ' (12) 

( - ~3 = 2-1/2 cosOq~,- sinOq~, (p2 + q2)1/2' 

_ o ) 
(aO 2 "k- q2) 1/2 ' 

( q ~4 - -  2-1/2  sinOqc, cOSOqc, (t92 ..~ q2)1/2,  

_ ) (p2 _~_ q2)1/2 ' 

so that ~ = {l 6 Rail -- ~--]~4=1 nig i, n i integers}. The 
CSL, Los 1, is the intersection of EII with/2,  that is, the 
set of points l 6 £ with zero component along E ±. By 
doing this in equation (12), we can find a basis {b 1, b2} 
for Lcs I that, after solving a diophantine system, yields 

b 1 = 21/2(q cos 22.5 + p sin 22.5, 0), 

b 2 = 21/2(0, q cos 22.5 + p sin 22.5) 

if  (p + q)/2  9( Z. Otherwise, the basis is {(b 1 + b2)/2, 
(b2 - bl)/2}.  

This last result gives us a general expression for the 
basis vectors of the CSL for a given angle between the 
lattices such that tan 0 -- p /q .  

6. Examples 

As an example, we have calculated some structures 
obtained by the cut and projection method following 
the criterion (10) for two square lattices. Fig. 4 
shows the GCSN structure corresponding to a 
quasiperiodic lattice obtained for 2 0 -  45 °, with 20 
being the angle between L I and L 2. This tiling is a 
subset of the standard octagonal quasiperiodic tiling. 
Following the notation used in the grain-boundaries 
field, Figs. 5(a) to (c) show the structures 
corresponding to 2:5 ( 2 0 - 3 6 . 8 7 ° ) ,  ,V13 ( 2 0 =  
22.62 °) and 2717 (20=28 .07° ) ,  respectively, all 
containing the associated CSL, whose primitive 
cells are shaded. 

7. Conclusions 

In this work, the problem of finding the points of 
good fit between pairs of lattices was solved using a 
higher-dimensional approach through a modified 
version of the cut and projection method. The 
good-fit criterion was provided by the GCSN method, 
which has been shown to describe accurately several 
general properties of grain boundaries. The formal- 
ism was presented in detail for the particular case of 
two square lattices rotated by an angle 0 and it was 
shown that the problem is equivalent to cut and 
projection with the usual strip replaced by a 
cylindrical 'pipe' .  

Making use of the fact that a change in the 
misorientation angle 0 corresponds to a rotation in 
higher-dimensional space, a description of the CSL of 
two square lattices and a prescription to find its basis 
vectors in terms of the angle 0 were given. A 
connection was also established between the best-fit 

7 

Fig. 4. The best-fit lattice (GCSN) of two square lattices with 
20 = 45 ° obtained by the cut and projection method. It is a subset of 
the octagonal quasiperiodic tiling. 
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(a) 

(b) 

I 
(c) 

Fig. 5. The best-fit lattice (GCSN) of two square lattices with special 
orientations according the terminology used in grain boundaries. 
(a) I;5 (20=36.87°), (b) I~13 (20=22.62 ° ) and (c) 2;17 
(20 = 28.07°). The primitive cells of the CSL associated with 
each structure are shaded. 

lattice and the rational approximants of quasiperiodic 
structures. 

Viewing grain boundaries as projections of lattices 
from higher dimensions provides a fruitful insight into 
both fields. Our calculations were performed in two 
dimensions where the connection with the cut and 
projection method is clearer. The extension to three 
dimensions for simple cubic lattices is straightforward. 
The case of more general lattices (which includes the 
case of lattices with different density) might not be 
trivial. In §4, some tools that can help in this last case 
are presented. 

This work was supported by CONACyT through 
grams 0205P-E9506, 0088P-E and 5165-E and 
DGAPA (UNAM) through grants IN-104296 and 
IN-107296. 
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